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Abstract: The fluid perturbation theory is a good choice for calculating the equation of state of 
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 mixture with different mole fraction in composition at wide range of temperature and pressure, and considering the effect of different value of pressure and temperature on the properties of fluid mixture of 
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 has been studied based on statistical mechanical perturbation theory. The effective Buckingham exp-6 potential have been selected as a best choice for inter- particle potential for simple molecule as hydrogen isotopes. Finally, the equation of state of 
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 fluid mixtures has been predicted over a wide range of pressure and temperature. 
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1. INTRODUCTION

   Hydrogen and its isotopes are the simplest element in the universe and investigation on the thermodynamic behaviour of mixture of hydrogen and it's isotopes are one of the most concerned topics related to a number of fundamental problems (such as inertial confinement fusion as a new energy source for mankind.)[1]

    The study of mixture of these isotopes is benefit for investigate on structural configuration of some planets [2], and because of the wide band gap of hydrogen isotope's molecule [3,4]  behave as a molecular fluid  (or solid). So it is important to pay attention on studying on the behaviour of the mixture of these isotopes based on recent theoretical approaches and predict the favourite condition for experiments.

    There are several way to develop a theoretical equation of state corresponding to a given potential function .like fitting the virial coefficient by given empirical data of temperature and density [5, 6]. And from integral equation method and perturbation theory, good reviews on both way are in[7-10]. Integral equation methods have been essential for the determination of analytical expression for the radial distribution function of fluids and the corresponding equation of state. 

    In spite of more application of integral equation we use perturbation theory because of simplicity and the great success of it on explaining the structure of fluid based on the short range of potential [11,12] and it can be used to soft potential such as 6-12 Lenard-Jones or exponential-six [13,14] potential.

    In this mixture of 
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 and 
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 we preferred to use the PY (Percus-Yevick) radial distribution function proposed in ref [15,16], we consider here the statistical mechanical perturbation theory[17] of a binary hard sphere mixture  with necessary correction for attractive forces and  Wigner-Kirkwood quantum correction  this approach is versatile and has been used successfully to construct the phase diagram of a binary mixture of hard core  molecules with square well.
2. THEORY
   As we know hydrogen and it's isotopes difference lie in the number of neutrons in each nucleus, but the atomic structure of these isotopes is like to each other because of the same electron number so in the same inter- particle distance the interaction and thermal behaviour of them is like to each other then we use same potential for describe interacting behaviour of them. 
2.1 Potential
   From above discussion we know that the interaction between molecules of 
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 system can be expressed using a three-parameter exp-6 potential with the same functional form [18].  
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    So we consider two-component fluid interacting via Buckingham potential 
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 between molecules of type i, j. This potential is more realistic than square-well or Yukawa potential for hydrogen isotope's mixture [19].  For handle of this potential in perturbation theory we express it in it's reduce form with 
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 where 
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 the closest distance to each particle and one of the boundary in quantum correction and perturbation integral. Assign by solving equation 
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 and 
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 the exact solution of eq. (3) can be written as Lambert (w) function
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where 
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 is the first branch of Lambert function (w ) and we can find 
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 where 
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 is the second branch of Lambert function and 
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 defined by dividing equation (4) by (5) and because of same atomic structure of  hydrogen and it's isotopes the three constant of potential is like to each other: 
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 that this constants come from molecular beam scattering data[20].

2.2. Perturbation method
By considering this problem we define Helmholtz free energy of system as :
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 is the free energy of an ideal fluid mixture[21] with N particle at temperature T:
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K is Boltzmann constant 
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 Helmholtz free energy of hard convex body form by combine of following parts as:
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 is non-sphericity parameter for the scaling theory[22].
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 is mole fraction of each component and  
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 is  the average molecular volume defined as:
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  Here 
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 define the number of element in a molecule, 
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  the hard sphere diameter of particle, 
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 is distance of centre to centre of each molecule, and
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 For derivation of  
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 Hard sphere part of Helmholtz free energy  
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 is defined by using integral of compressibility factor as in following form:
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   Barrio and Solana [24, 25] suggested a correction term 
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where
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   As we said 
[image: image55.wmf]i

c

 stand for mole fraction, 
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  hard sphere diameter defined as below:
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  From eq. (14) 
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 The correction term due to non-additively of the hard sphere diameter is [27]:
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   As we have said 
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 that defined by eq. (19) and 
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 contact point by inclusion of Barrio and Solana correction on EOS of BMCSL we have improved form of RDF that yields exact asymptotic expression for the thermodynamic properties.
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    For 
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 first order perturbation contribution which arise from long range attraction, that has considerable significance .and we derive it by using statistical mechanical theory and by distribution function of  
[image: image67.wmf])

(

r

g

ij

 that defined by Matteoli and Mansoori and by use of Buckingham potential 
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, which is a measure of the spatial structure of the particles in reference system i.e., the expected number of particles at a distance of  r . A  cubic spline interpolation  of PY RDF  is used to reduce the computational time and make easier the analytical derivation with respect to η (compact factor).the first order quantum correction to Helmholtz free energy by generalizing the Wigner-Kirkwood correction [25,26] for one component fluid to binary mixture is:
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   In the view of the energy eq. (6) one can readily obtain the equation for pressure, in following form :
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The equation for the different contributions to pressure can be obtained from the respective free energy as:
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By exp-6 potential we compute Helmholtz free energy, the ten-point Gauss quadrature is used to compute integrals in quantum correction and perturbation contribution and by above relation we obtain various contribution of pressure.
   The calculated pressure for ideal fluid mixture of 
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 with equal mole fraction are shown in Fig. 1  it can be seen that ideal term of pressure increase with increasing temperature and density as we see in Fig. 2 the effect of hard sphere term of pressure in this rang of temperature is significant and the range of pressure variation is wider than ideal part   The difference between isotopes is simply related to the neutron number in each nucleus  and affect parts of correction by presence of mass. Figure 3 and 4, show the predicted equimolar surface of the deuterium and tritium mixture for quantum correction term this part being the most significant contribution at low temperature and varying smoothly in higher temperature. Perturbation contribution is shown in Figure 5 and 6, at very high densities, this contribution increases sharply with reduced density. All terms  
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We can see sum of the various term of pressure at Figure 7 and 8 as total pressure. The various components of P depend strongly on density in the lower temperature range because of same atomic structure of tritium and deuterium the contribution of the non-additive hard sphere term is negligible in comparison with other contribution above T=100 K, the main contribution arise from hard sphere part and the impact of other contribution is small in comparison to
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Fig. 1. Pressure of ideal mixing for deuterium, tritium equimolar mixture as a function of reduced density and temperature.
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Fig. 2. Hard sphere term of pressure for fluid mixture of  tritium, deuterium.
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Fig. 3. Equimolar surface of quantum correction part of pressure vs temperature and reduced density for temperature from 0 to 150. 
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Fig. 4. Quantum correction term of pressure for tritium, deuterium mixture. 
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Fig. 5. Equimolar surface of perturbation contribution of pressure vs temperature and reduced density.
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Fig. 6. Pressure due to perturbation term of fluid tritium and deuterium mixture.
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Fig. 7. Equimolar surface of fluid mixture of tritium, deuterium for total pressure.
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Fig. 8. Total pressure as a function of temperature and reduced density for deuterium and tritium mixture.

3. CONCLUSIONS
   A theory of mixture is developed on the basis of statistical perturbation scheme to study the equation of state of mixing. The predicted EOS for the two component fluid mixtures are extended to pressure up to 100 Gpa and temperature up to 10 kK. However, the many particle interactions might not be well approximated by these effective pair potentials at high pressures. Another effect, the pressure dissociation of hydrogen molecules, should occur under these conditions as well. Therefore, the calculated model is restricted to pressure below 100 Gpa. 
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