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Abstract: A new approach to gas leakage detection in high pressure distribution networks
is proposed, where two leakage detectors are modelled as a Linear Parameter Varying (LPV)
system whose scheduling signals are, respectively, intake and offtake pressures. Running the
two detectors simultaneously allows for leakage location. First, the pipeline is identified
from operational data, supplied by REN-Gasodutos and using an LPV systems identification
algorithm proposed in [Lopes dos Santos et al., 2008b]. Each leakage detector uses two Kalman
filters where the fault is viewed as an augmented state. The first filter estimates the flow using a
calculated scheduling signal, assuming that there is no leakage. Therefore it works as a reference.
The second one uses a measured scheduling signal and the augmented state is compared with the
reference value. Whenever there is a significant difference, a leakage is detected. The effectiveness
of this method is illustrated with an example where a mixture of real and simulated data is
used.

Keywords: Gas Networks, Kalman Filter, Leakage Detection, LPV Subspace Identification.

1. INTRODUCTION

Leak detection and location is one of the paramount con-
cerns of pipeline operators all over the world. A timely
evaluation and response to a leak, allows proper manage-
ment of the consequences and an effective risk minimi-
sation. Present methods for gas leakage detection range
from manual inspection using trained dogs to advanced
satellite imaging [Geiger and Werner, 2003, Sivathanu,
2004, Zhang, 1996]. They can be classified as acoustic
monitoring, optical monitoring, gas sampling, soil moni-
toring, flow monitoring and model-based methods. Flow
monitoring and model based methods are widely used in
the gas industry. Both continuously measure the pressure
and/or massflow signals at different sections of the pipeline
(mostly only at the extremes). Leaks are detected from
the massflow balance equations, which consist in balancing
the flow at the boundaries plus the variation of linepack
(LP), i.e. the amount of gas stored in the pipes. However,
a considerable drawback is the LP model being strongly
dependent on the noise of the pressure/temperature mea-
surements. In [Vostrý, 2004], corrections to the LP model
in the pipelines are used to obtain a more robust method.
Although in [Baptista et al., 2005] it is claimed that the

Simone R© simulator allows for calculating accurately the
LP, even under extreme conditions, these methods can-
not be considered completely reliable since a significant
number of false alarm rates is registered everyday. This
is mainly due to an integral term of the balance equation,
which integrates the massflow difference at the boundaries.
These flow measurements are corrupted by noise which will
be also integrated, introducing a random walk term in the
balance equation. This term is a non-stationary stochastic
process with a variance proportional to the integration
time. As a result, the balance equation is always corrupted
by a significant amount of noise that can easily trigger false
alarms. Some model based methods avoid this problem by
using state observers with the fault parameters treated
as augmented states [Benkherouf and Allidina, 1988, Liu
et al., 2005]. Although this is an appealing approach,
the models used so far were too complex, giving rise to
estimators with too high computational costs.

In [Lopes dos Santos et al., 2010], the pipeline is modelled
as an LPV system and identified from operational data
using an algorithm described in [Lopes dos Santos et al.,
2007] and [Lopes dos Santos et al., 2008a]. The leakage is



detected with a Kalman filter where the fault is treated as
an additional state.

In [Lopes dos Santos et al., 2011], the deduction of the
LPV state space (SS) model structure with static and
affine dependence on the scheduling signal shows that it
is possible to represent the gas dynamics using a model
of this type. Moreover, some of the parameters have no
physical meaning and are not measurable. Therefore the
need to use an identification algorithm.

Different algorithms exist for the problem of LPV state-
space identification. Basically, we can distinguish between
the subspace approaches and the ones based on the opti-
misation of a criterium. Usually, subspace methods are no
iterative, but suffer from the curse of dimensionality even
when dealing with low order models. The optimisation
based models typically minimise quadratic error criteria.
Since the error is not a linear function of the parameters,
iterative algorithms are required and convergence to the
global minima becomes an issue. We chose an iterative sub-
space method, whose algorithm guarantees convergence
to a sub-optimal model under certain conditions. It also
avoids the curse of dimensionality. Although, we cannot
prove that the required convergence conditions are not
fulfilled for this case, it has converged every time it has
been run by the pipeline identification. Furthermore, the
accuracy of the identified models showed to be always
adequate for leakage detection. In the case of no suitability
of the models, they can always be used as an initialisation
to an optimisation procedure.

In [Lopes dos Santos et al., 2011] a new approach to gas
leakage detection in high pressure natural gas transporta-
tion networks was proposed. The pipeline was modelled
as an LPV system driven by the source node massflow
with the LP as the scheduling parameter. The massflow
at the offtake node is taken as the system output. The
system is also identified by the algorithm described in
[Lopes dos Santos et al., 2008b] and the leakage is detected
using a Kalman filter where the fault is treated as an
augmented state. Given that the gas LP can be estimated
from the massflow balance equation, a differential method
is proposed to improve the leakage detector effectiveness.
The proposed LPV Kalman filter based methods were
compared with a standard mass balance method in a
simulated 10% leakage detection scenario. The Differential
Kalman Filter method proved to be highly efficient.

In this paper the same approach is followed. Two leakage
detectors are implemented, where the scheduling signal
is first the intake pressure and next the offtake pressure.
The pressures are calculated using an approximation of the
lumped transfer function model for high pressure natural
gas pipelines derived in [dos Santos et al., 2010a]; there,
starting with a PDE model, a high order continuous state
space linear model is obtained using a finite difference
method. Next, from the SS representation an infinite order
transfer function (TF) model is calculated. In the end, this
TF is approximated by a compact non-rational function.
This compact non-rational function may be further ap-
proximated by a simple integral model [dos Santos et al.,
2010b].

In this article, in Section II the model is identified and
the output is simulated using a Kalman filter. In Section

III, the two leakage detectors are described. Each leakage
detector is essentially a Kalman filter with an additional
state variable mimicking a leakage modelled as a ran-
dom walk. In Section IV, an interative leakage locator is
deduced by comparison of the two leakage detectors. In
Section V, we withdraw some conclusions and point out
some directions along which we would like the work to
proceed.

2. REPRESENTATION OF THE GAS DYNAMICS AS
AN LPV MODEL

The gas dynamics in a pipeline may be represented
by the following hyperbolic partial differential equations
(Nieplocha:1):
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where s is space, t is time, P is edge pressure-drop,
Q is massflow, S is the cross-sectional area, d is the
pipe diameter, c is the isothermal speed of sound, and
λ is the friction factor. In the figure below, Qi is the
intake massflow and Qo the offtake massflow and Pi is
the intake pressure and Po the offtake pressure. The time

Pi(t)

Qi(t)

L

Qo(t)

Po(t)

pressure variations are assumed to have a unit correlation
coefficient along the pipeline, and then are all proportional
to a function p̃(t), i.e., p̃(s, t) = K(s)p̃(t) [Lopes dos
Santos et al., 2010]. Since the pressure varies slowly, this
is a reasonable assumption for short length pipelines, i.e.,
ca. 35-50 Km. Under this assumption, a discrete LPV
model with affine parameter dependence, with Ts as the
sampling period, was obtained [Lopes dos Santos et al.,
2010]. Hence:

x(k + 1) = A0x(k) + App̃(k)x(k) + B0u(k) + Bpp̃(k)u(k)
y(k) = C0x(k) + Cpp̃(k)x(k) + D0u(k) + Dpp̃(k)u(k).

(2)

3. GAS PIPELINE LPV IDENTIFICATION

In this section, an LPV model was identified from a
mixture of measured and simulated data of a gas pipeline
depicted in the Figure 1 below:

Operational field measurements are all the intake/offtake
massflows as well as the pressures along the entire network.
These are available to Simone R©, a simulator installed at
REN–Gasodutos headquarters, through a SCADA system.
Intermediate flow rate measurements are not available and
need to be simulated. These are calculated by Simone R©

from the intake/offtake measured massflows. Simone R©

also computes the pressures along the network, which are
compared with the measured ones to assess the simulator
performance [GmbH and s.r.o, 2004, Wagner, 2004]. In our
example, we used measured values for the pressures and for
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Fig. 1. Gas pipeline located in the South of Portugal, used
as case study.

the intake massflow (a source point) and simulated values
for the offtake flow. To simulate a leakage, we calculate the
pressure drop, and then subtracted it from the measured
pressure values.

For the case study, we consider a cylindrical pipeline with
a diameter of d = 793 mm, a length of L = 36 Km, and
a roughness factor of λ = 0.005 mm. The TERMINAL A,
JCT LEAK, and BV 12400 A are the pipeline intake node,
the simulated leakage point, and the pipeline offtake node,
respectively. The simulation reproduces a working gas day
( March, 2, 2009), in the closed interval [0h, 24h], with no
leakages, and at the constant temperature of 18.5oC. The
data was collected with a sampling rate of 2 minutes.

Figure 2 depicts a working day data, i.e., the profiles of the
intake and offtake pressure and massflow. We can see that
the pressure time pattern seems to be the same for both
endpoints of the pipeline. In fact it presents a correlation
coefficient value of 0.9998, which validates the pressure
proportionality assumption.
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Fig. 2. Left: Intake and offtake massflows Qi(t) (blue)
and Qo(t) (green). Right: Intake and offtake node
pressures Pi(t) (blue) and Po(t) (green).

For the first leakage detector the pipeline is modelled
as the discrete LPV system, as in (2), using the time
varying component (ac component) of the intake pressure
as the scheduling signal. The second one uses the offtake
pressure. The LPV models were identified with the Suc-
cessive Approximations Subspace Identification Algorithm
in [Lopes dos Santos et al., 2007] with the intake/offtake
pressure as the scheduling parameter. These pressures were
computed from:

Pic(t) =
KG

α
Qi(t) + KG

∫ t

−∞

Qi(τ)dτ (3)

−
KG

α
Qo(t)(t − TL) − KG

∫ t

−∞

Qo(τ − TL)dτ

Poc(t) =
KG

α
Qi(t − TL) + KG

∫ t

−∞

Qi(τ − TL)dτ (4)

−
KG

α
Qo(t)(t) − KG

∫ t

−∞

Qo(τ)dτ

with TL =
L

c
and parameters KG, α being estimated from

the data. See [dos Santos et al., 2010b] for the derivation of
the equations. Figure 3 compares the calculated with the
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Fig. 3. Measured (blue) and calculated (green) pressures.
Left: Intake node. Right: Offtake node.

measured values for both the intake and offtake pressures.

The LPV identification algorithm estimated two innova-
tion models of the form:

x(k + 1) = A0x(k) + B0u(k) + Ap [p̃(k)x(k)]
+Bp [p̃(k)u(k)] + Ke(k)

y(k) = C0x(k) + D0u(k) + Cp [p̃(k)x(k)]
+Dp [p̃(k)u(k)] + e(k),

(5)

with u(k) = Qi(k), y(k) = Qo(k) and p̃(k) = Pi(k) − P̄i

or p̃(k) = Po(k) − P̄o, where P̄ means the average value
along time. e(k) is the zero mean white noise.

With the calculated intake pressure as the scheduling
signal the following parameters were obtained:

A0i
= 0.9661,B0i

= −0.1290× 10−1,C0i
= −2.0120,

D0i
= 0.2101,Bpi

= −0.5977× 10−3,Api
= 0.3000× 10−2,

Cpi
= 5.370, Dpi

= −0.1340× 10−1,Ki = −0.1540.

The left frame of Figure 4 compares the simulated offtake
massflow with its true value. The right frame compares
the predicted offtake massflow with its true value.
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ŷi(t)
Qo(t)

time(hours)

Knm3/h

Fig. 4. Left: True Qi(t), (blue) and simulated ysi(t),
(green) offtake massflow. Right: True Qi(t), (blue)
and predicted ŷi(t), (green) offtake massflow.

When considering the calculated offtake pressure as the
scheduling signal, the following parameters were obtained:



A0o
= 0.9528,B0o

= −0.191× 10−1, C0o
= −2.1137,

D0o
= 0.1263,Bpo

= −0.6013× 10−3,Apo
= 0.2100× 10−2,

Cpo
= 6.550, Dpo

= −0.393× 10−1, Ko = −0.1570.

The left frame of Figure 5 compares the simulated and the
predicted values with the true ones.
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Fig. 5. Left: True Qo(t), (blue) and simulated yso(t),
(red) offtake massflow. Right: True Qo(t), (blue) and
predicted ŷo(t), (red) offtake massflow.

4. LEAKAGE DETECTION

In this section, a leakage was simulated by subtracting to
the offtake massflow 10% from its mean value.

A method that uses a Kalman filter, built from an identi-
fied first order model, is described next. Thus, consider:

xleaki
(k + 1) = xleaki

(k) + eleaki
(k)

x(k + 1) = A0x(k) + B0u(k) + App̃(k)x(k)

+Bpp̃(k)u(k) + Ke(k)

y(k) = xleaki
(k) + C0x(k) + D0u(k)

+Cpp̃(k)x(k) + Dpp̃(k)u(k) + e(k),

where A0, B0, C0, D0, Ap, Bp, Cp, Dp are parameters
of the identified model. eleaki

(k) is also a zero mean white
noise term, not correlated with e(k), whose variance ia a
design parameter. xleaki

(k) is the leakage detection signal
and should be different from zero only in case of leakage.

This model has an additional state that is supposed to
remain close to zero when there is no leakage. When a
leakage occurs it should take the leakage value. From
this idea, a Differential Kalman Filter based method was
derived. This method consists in using two detectors and
is identical to the one presented in [Lopes dos Santos
et al., 2009], but the scheduling signals are now first
the calculated intake pressure and second the calculated
offtake pressure. The two different scheduling signals lead
to two different leakage detectors, where each one runs two
instances of this Kalman filter; the first instance uses the
calculated pressure as the scheduling signal and the second
uses the measured pressure. Since the first filter uses the
calculated pressure it can never detect a leakage. Instead,
it works as a reference signal. This filter leakage state is
continuously compared with the corresponding state of the
second filter, the one that uses the measured pressure as
the scheduling signal. When there is no leakage, these
states remain close to each other, but when a leakage
occurs their difference takes the leakage value. In what
follows, it can be seen, this method is very fast and
accurate, and also well suited to detect small leakages.

We first describe the leakage detector whose scheduling
signal is the intake pressure. The other leakage detector,
i.e. the one that uses the offtake pressure as the scheduling
signal is identical in every detail except for the chosen
scheduling signal.

The calculated intake pressure, Pic, is obtained from (3).
Given that the leakage does not appear in this equation
and the pressure solely depends on the intake/offtake
massflows, the calculated scheduling signal always con-
siders that there is no leakage in the pipeline. Thence,
if we generate the scheduling parameter from this signal,
a non leakage LPV model will always be identified and
the Kalman filter should never detect a leakage. As a
result, one should use this Kalman filter leakage estimate

as a reference signal denoted by x̂ref
leaki

(k). In parallel, one
must run another instance of this Kalman filter using
a scheduling signal generated from the measured intake
pressure, i.e., from Pim(k). This Kalman filter leakage
estimate is denoted by x̂leaki

(k). In the absence of leakage,
both leakage estimates should be equal to zero. But, when

a leakage occurs x̂ref
leaki

(k) remains zero and x̂leaki
(k) takes

the value of the leakage. As such, the signal

x̃leaki
(k) = x̂ref

leaki
(k) − x̂leaki

(k). (6)

is leak sensitive and will be used to detect leakages. This
signal depicted in Figure 6 represents a non faulty situa-
tion. It has an expected value of Mi = −0.1817 Knm3/h
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Fig. 6. Leak reference signal x̃leaki
(k) in normal operation

conditions (i.e. no leaks).

and a standard deviation σi = 0.5631 Knm3/h. From
these values, upper and lower bounds of T upper

Li = Mi +

3σi = 1.5075 and T lower
Li = Mi − 3σi = −1.8709 were

defined. A leakage is detected when this signal leaves the
interval defined by these detection thresholds.
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Fig. 7. Left: Leak massflow Qleak. Right: Intake pressure
drop due to leakage (red).

To illustrate this method, a leakage has been simulated at
t = 12h and at the distance of 12 Km from the intake node.
The left frame of Figure 7 shows the leakage massflow (ca.
10% massflow) and the right frame of Figure 7 shows the
respective pressure reduction at the intake node of the



pipeline. x̂leaki
(k) was estimated for this leakage scenario

and then x̃leaki
(k) was calculated. Figure 8 shows the

bounds just defined to be adequate for the detection of the
leak. Recall that the leakage occurred at tleak = 12h with
its influence being felt at tleaki

= 12h00′20′′. Detection
was done at ti = 12h12′. So, it took 11′40′′ to be detected.
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Fig. 8. Leak detection using the intake node pressure as
scheduling signal.

To obtain the offtake pressure leakage detector, as we fol-
low exactly the same procedure as for the intake pressure
leakage detector, a leakage has been simulated in equal
conditions. Its influence was felt at tleako

= 12h00′40′′.
Detection was done at to = 12h10′. The detector took
9′20′′ to find the leak (see Figure 9).
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Fig. 9. Leak detection using the offtake node pressure as
scheduling signal.

The difference between the time instants, tleaki
and tleako

,
when the endpoints pressures begin to drop due to a leak,
is a linear function of the leak location. However, this does
not coincide with ti − to due to factors such as noise and
the different filters dynamics. As the leakage location is
not a known function of the ti− to, we need more accurate
measures of tleaki

− tleako
to locate a leakage. This will be

done in the next section where an interactive methodology
for leakage location is proposed.

5. LEAKAGE LOCATION

Figures 8 and 9 show that the signals x̃leaki
(k) and

x̃leako
(k) are smooth before the leakage is detected and

a sudden change occurs with the signal becoming more
variable once the leakage is perceived. The idea is to use
this variation to estimate tleaki

and tleako
. This sudden

change causes a pulse at each differential signal:

δx̃leaki
(k) = x̃leaki

(k) − x̃leaki
(k − 1)

δx̃leako
(k) = x̃leako

(k) − x̃leako
(k − 1).

From the left frame of Figure 10, we notice that this pulse
is masked by the measurement noise. However the same

pulse is perceptible in the right frame of Figure 10, since
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this is a magnification of the left frame around the instance
that the leakage occurs. Here, a jump in δx̃leaki

(k) is clear.
To detect the leakage, we define a threshold:

Tδi
= δMi + 2δσi

where δMi e 2δσi are, respectively, the expected value
and the standard deviation of δx̃leaki

(t) before the leak is
detected. The following values were obtained for these pa-
rameters: δMi = −0.0011, δσi = 0.1608 and Tδi

= 0.3206.
From the observation of Figure 10 one may expect a con-
siderable number of false alarms whenever this threshold is
adopted. This is confirmed by Figure 11 were the leakage
alarms are shown (the red vertical lines).
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Fig. 11. Leak alarms triggered by δx̃leaki
(t).

One may also observe that the density of such points
increases significantly immediately before x̃leaki

(t) over-
takes the leakage detection threshold. Consequently, we
may select the first of these points as the first instant
that the leakage is perceived by the intake node. That
is t̂leaki

= 12h04′, and this is exactly the sampling instant
after the leakage is perceived by the intake pressure.

An identical procedure has been adopted to find the first
instant at which the leakage is perceived by the offtake
pressure. The following values correspond to the expected
value and standard deviation of δx̃leako

(k), respectively:
δM0 = −0.0019, δσi = 0.2540 and Tδi

= 0.3206 and these
values lead to the threshold Tδi

= 0.5061.

Figure 12 shows the leakage marks obtained from δx̃leako
(k),

which are also more dense immediately before the leakage
is detected by the signal x̃leako

(k). Four false alarms were
registered before this sequence started at instant t̂leako

=
12h06′, i.e., the instant immediately after the leakage is
perceived by the offtake pressure.

Consider now x the distance from the leakage to the intake
node, L the length of the pipe and c the speed of the



0 4 8 12 16 20 24
−4

−3

−2

−1

0

1

2

3

4
Leak Alarm

Fig. 12. Leak alarms triggered by δx̃leako
(t).

wave pressure. The wave pressure caused by the leakage

takes tleaki
=

x

c
sec to be felt by the intake node and

tleako
=

L − x

c
sec to be felt by the offtake node.

Q(t, x)
Qi(t)

L

Qo(t)

Po(t)Pi(t)

x

P (t, x)

As tleako
− tleaki

= to − ti = 2′ = 120 sec and c = 300 m/s
then x = 0. This means that the leakage took place at the
intake node. As a matter of fact, the leakage happens at
x = 12 km! However as a sampling period of 120 sec is the
time it takes for a pressure wave to cross 36 Km, the better
available resolution is 18 Km. In order to achieve better
resolutions, a finer sampling period is required. This is
not viable due to technical/equipment limitations at REN-
Gasodutos.

6. CONCLUSIONS

In this paper, starting from an LPV identification model,
first a differential Kalman filter leakage detector is pro-
posed, were two identical detectors are run simultaneously.
One considers the scheduling signal as the intake pressure
and the other the offtake pressure. When these two de-
tectors run simultaneously a location procedure becomes
possible, since the leak location is a linear function of the
difference between the time instants the leak is perceived
at the pipe endpoints. Based on this fact, an interactive
methodology for leakage location has also been presented.

The methodology has been tested with data supplied by
REN-Gasodutos, however accuracy of the leakage locator
was limited by the long sampling periods possible at REN.
The application of the same methodology to more complex
pipelines will be considered in the near future with higher
sampling rates.
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